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Abstract. Live programming environments aim to provide rapid and
continuous feedback to developers, but this can be challenging when a
program is incomplete. Hazel is a live programming environment that
aims to solve this problem by using expression and type holes to stand
for missing terms or mark erroneous terms. Hazel is based on the Hazel-
nut Live calculus presented in prior work.

This paper starts by presenting Polymorphic Hazelnut Live, an exten-
sion of Hazelnut Live to support explicit System F-style polymorphism.
We show, with mechanized proofs in Agda, that this extended system
satisfies the key metatheoretic properties necessary for live programming
with typed holes. We compare the type system of Polymorphic Hazelnut
Live to other systems that combine gradual typing (i.e. the theory of type
holes) with polymorphism, discussing subtleties related to parametricity
and the gradual guarantee.

Finally, we present a method to integrate a form of implicit type appli-
cation into the Hazel architecture. We propose a system in which the
programmer may omit explicit type applications, and the editor (rather
than downstream tools like a typechecker or compiler) implicitly inserts
and fills them, allowing the user to see and override these implicit type
applications as needed.

1 Introduction

Live programming environments seek to provide programmers with continuous
feedback by analyzing and evaluating programs as they are being edited [24].
Some common examples of live programming environments are Jupyter Note-
books [11] (which integrate with several languages such as Julia, Python, and
R), spreadsheets [26], and editor-integrated debuggers [13]. However, one chal-
lenge to the live model is that in most languages, incomplete programs do not
have formal structure or meaning. Many IDEs therefore either exhibit gaps in
liveness or rely on heuristic error recovery methods to reason about incomplete
programs. This creates many situations where a programmer may receive incom-
plete or incorrect information about their code as they are in the process of
editing it. In these cases, they must finish their edit then wait for the tool’s
analysis to update.
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The Hazel programming language and environment seeks to solve this prob-
lem of reasoning about incomplete programs by defining a formal semantics
for expressions that can contain holes in types, expressions, and patterns (col-
lectively, terms). Empty holes stand for missing terms, while non-empty holes
serve as marked membranes around erroneous terms. The Hazel editor inserts
these holes automatically [15], and Hazel is unique in assigning rich static and
dynamic meaning to every editor state [19].

Hazel is based on the Hazelnut Live calculus, which defines a static and
dynamic semantics for programs with expression and type holes [18]. Hazelnut
Live combines and extends ideas from contextual modal type theory [16] and
the gradually typed lambda calculus [21]. Section 2.1 provides more background
on the details of Hazel and its calculi.

The problem that motivates this work is that Hazelnut Live did not consider
abstraction over types, which is key for practical typed functional programming.
Our contributions in this paper are to:

– extend the theory of Hazelnut Live to include explicit polymorphism,
– extend the existing Hazel implementation to support polymorphic program-

ming with typed holes,
– define a novel weakening of parametricity that is shown to hold of the system,
– prove the static gradual guarantee for the system, and
– propose an editor service that combines some of the strengths of explicit and

implicit polymorphism.

Section 3 presents Polymorphic Hazelnut Live, a polymorphic extension of Hazel-
nut Live. Section 4 establishes that Polymorphic Hazelnut Live retains the key
metatheoretic properties of Hazelnut Live, suitably modified to account for type
variables, including type safety (in the presence of holes), and discusses the
important metatheoretic properties that were not previously considered for Hazel
but that have been studied in the literature, namely parametricity [9] and the
gradual guarantee [22]. Type holes are known to weaken parametricity. We review
this active research area and discuss a weakening of parametricity that holds of
our system. Section 5 describes our mechanization of these metatheoretic proper-
ties in Agda and the implementation of polymorphism in the Hazel programming
environment. In practice, it is cumbersome to explicitly apply type abstractions
and most major functional languages support implicitly inferred type applica-
tions. Section 6 approaches the problem of implicit type application in a unique
way – by outlining an in-progress edit-time implicit type application system for
Hazel, whereby users can see and intervene in the implicit application when
desired rather than relying on invisible implicit type application logic.

2 Background

2.1 The Hazel Programming Environment

Hazel is a live functional programming environment that provides gapless editor
support; that is, all editor states, including those corresponding to incomplete
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Fig. 1. Screenshots of the current Hazel UI showing off polymorphic functions, includ-
ing the polymorphic identity, a rank-2 polymorphic function, and a polymorphic map
featuring both type and expression holes (expression hole is the argument of the out-
lined application).

Fig. 2. Mockup of a hypothetical Hazel UI showing a folded (above) and unfolded
(below) automatically inserted type application. Such an editor service fits into the
existing Hazel architecture and would allow polymorphic functions to be used as if
they were implicit.

programs, are endowed with static and dynamic meaning. Figure 1 displays some
examples of polymorphic code in the Hazel editor and shows typed expression
holes within polymorphic code. Figure 2 displays a hypothetical Hazel interface
for a editor service that would insert type applications automatically, and would
recover some benefits of implicit polymorphism. A reader who is more interested
in the user-centered aspect of Hazel and less in its formal theory may wish to
jump directly to the discussion of this feature, in Sect. 6.

2.2 The Theory of Hazel

The theory of Hazel is organized into several calculi, somewhat analogous to
compiler phases. The Hazel grammar is shown in Fig. 3, including types and
three different kinds of expressions. b stands for any base types of the language,
and c for any constants. We have simplified the presentation slightly by removing

Fig. 3. Simplified Hazel grammar.
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information carried by the holes in the different calculi and other constructs not
relevant to this work (such as abstract data types, etc.).

To illustrate the main components of the theory of Hazel, we provide an
example rule for dealing with function applications at each major stage of Hazel
in Fig. 4.

Parsing with Holes. Hazel users enter code using an editor that inserts holes
automatically to ensure that every editor state contains a well-formed expression
with holes, e. The Hazelnut calculus [19] defined an edit action calculus that
inserts these holes, which has since evolved to a support more natural keyboard-
driven input [15].

In Hazelnut, the resulting expression is guaranteed to be both syntactically
and statically valid. However, in the newer editor calculus with flexible keyboard-
driven input, the resulting expression is only guaranteed to be syntactically valid,
and may still have static errors. To address this, Zhao et al. [28] describe the
marked lambda calculus, a system that restores static correctness by inserting
marks, or nonempty holes, into syntactically valid programs. We further discuss
this procedure in Sect. 6, but do not include it in our presentation.

Elaboration. After marking, the program is syntactically and statically valid.
Hazelnut Live is a system for endowing Hazel with dynamic semantics. It oper-
ates by bidirectionally elaborating external (hole) expressions (HExp) into inter-
nal (holes) expressions (IHExp). We will identify the external expressions of Hazel-
nut Live with the marked expressions of the marked lambda calculus. In Hazel-
nut Live, all holes also carry a unique name, and internal holes carry a finite
substitution of terms in for variables.

The elaboration judgment forms are Γ � e ⇒ τ � d � Δ and Γ � e ⇐ τ1 �
d : τ2 � Δ. Note that in the analytic case a type τ2 is output as well, which must
be consistent with the input τ1. During elaboration, casts between types are
inserted to enable dynamic type checks that are necessary due to missing type
information, i.e. type holes, in the original program. Elaboration also produces
a hole context Δ, which maps the program’s empty and nonempty holes to their
contexts and expected types, and associates each hole occurrence with a sequence
of substitutions that has been applied to it. This facilitates the fill-and-resume
operation, by which a reduced program with holes can be refined (by filling an
empty hole with an expression) and reduction can be resumed.

These internal expressions d are typed via a type assignment judgment of
form Δ;Γ � d : τ . This type assignment judgment is not bidirectional, unlike for
external expressions. The hole context is an input to this judgment, as it assigns
types to holes. Figure 4 contains the elaboration and internal typing rules for
applications, ESAp and TALam.

Evaluation. Internal expressions are evaluated via a stepping relation of form
d �→ d′, and the resulting normal form, if it exists, is reported back to the
end user. The stepping relation is defined via contextual semantics, meaning
redexes and evaluation contexts are defined (not shown here), with a transition



138 A. Chen et al.

Fig. 4. Example rules for function application expressions. SAp synthesizes a type for
the external expression (�→ expands the gradual type to a function type if need
be), TAAp assigns a type to the internal expression, and ITLam describes how it
reduces. The brackets on ITLam indicate that the hypothesis may be omitted for a
non-deterministic evaluation system.

relation d −→ d′ defined on redexes. Figure 4 contains the transition relation
corresponding to beta reduction, ITLam.

Note that having a gradually typed, user-facing language that elaborates
into an internal cast calculus is typical of gradually typed systems [22]. The
transitions include standard features like beta reduction, holes blocking reduc-
tion, and tracking casts to catch dynamic type errors. Casts are decomposed as
much as possible, until they are between top-level type formers applied only to
holes (ground types), with inconsistencies at this level resulting in a failed cast,
representing a dynamic type error.

2.3 Polymorphic Gradual Typing

The gradually typed lambda calculus is an extension to the simply typed lambda
calculus [4] that adds the gradual type (commonly notated as a question mark: ?)
to the simply typed lambda calculus, with type equivalence giving way to a (non-
transitive) consistency relation between types: the unknown type is consistent
with every type [21]. Gradual typing offers a compromise between an untyped
and a simply typed calculus; indeed, any untyped term may be embedded into
the gradually typed calculus by typing everything at the gradual type. This offers
programmers the flexibility to work outside of the type system when they deem
it beneficial to do so, and the benefits of allowing this are exemplified in the
success of TypeScript [3]. Siek et al. [22] later formalized some properties that
hold of the gradually typed lambda calculus that make working in a gradually
typed system intuitive for programmers. These properties are collectively known
as the gradual guarantee, and are the gold standard properties that are desirable
for extensions of the gradually typed lambda calculus. Informally, the gradual
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guarantee states that removing parts of type annotations from a program cannot
introduce new static or dynamic errors.

System F [8,20] is another extension to the simply typed lambda calculus
that adds type functions and polymorphic types. System F has become the
go-to model for polymorphic functions, with restrictions of System F becom-
ing the type systems for widely-used functional programming languages such as
Haskell, OCaml, F#, and more. One of the reasons System F is so powerful is
the strong metatheoretic property of parametricity [9]. Informally, parametricity
asserts that a polymorphic function should behave in analogous ways no matter
what type the function is instantiated at. This means that one cannot perform
computations based on types, and indeed, parametric systems allow for iden-
tical evaluation after type erasure [14], which can also be used as a run-time
optimization.

There have been several attempts to combine the gradually typed lambda
calculus with System F. λB, presented by Ahmed et al. [2], was the first system
to add the gradual type to a cast calculus based on System F while preserving
parametricity. They achieved this by using type bindings as opposed to type
substitutions. In effect, this means that if a polymorphic functions error on any
instantiation, then it will error on all instantiations, even if it makes sense to
successfully evaluate some of the instantiations. (We will argue that this behav-
ior is undesirable and investigate what metatheoretic properties hold without
type bindings.) This also introduces some run-time overhead. System FG, pre-
sented by Igarashi et al. [10], presents a user-facing gradually typed calculus
that compiles to a cast calculus, akin to the gradually typed lambda calculus.
System FG is shown to both be parametric as well as satisfy the gradual guaran-
tee – albeit for a modified notion of precision for polymorphic types. Parametric
and gradual system PolyGν , presented by New et al. [17], requires explicit seal-
ing and unsealing of type variables. The system is based on the intuition that
parametricity arises from disallowing computation on types. Gradual System F
(GSF) is a system presented by Labrada et al. [12], which, like System FG, also
exhibits parametricity as well as the gradual guarantee. Similarly to the previ-
ous systems, this is accomplished with the use of type bindings. However unlike
System FG, a more intuitive notion of precision is defined. Out of the previously
presented systems, GSF is the most similar to the one we will present. It is also
worth noting the work of Xie et al. [27], who define a system that uses subtyping
to provide implicit polymorphism. Notably, their system violates the gradual
guarantee due to the necessity of an oracle for some ambiguous instantiations.

3 The System

We extend the types, external expressions, and internal expressions of Hazelnut
Live with type variables, universal types, polymorphic abstraction, and type
application (Fig. 5).
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Fig. 5. Syntax extension of polymorphic Hazel.

With the introduction of the new type form, we define a corresponding match-
ing judgment for expanding the gradual type into a forall form where necessary
(Fig. 6). Note that the gradual type is identified with the type hole and is denoted
?.

3.1 Gradually Typed Calculus

We extend the bidirectional typing rules as shown in Fig. 8. We augment typing
judgments with type variable contexts Σ, which are sets of type variables in
scope. Notably, type functions may be typed both analytically and synthetically.
Type functions admit both analytic and synthetic rules. This is a deviation from
Dunfield and Krishnaswami’s “bidirectional recipe” [6], which prescribes only
the analysis rule for type abstractions, since they are introduction forms. We
include both rules because doing so improves the expressiveness of the system
(for example, the type of the polymorphic identity function Λα. λx : α. x may
be synthesized).

Rule STAp has as a premise Σ � τ1, the well-formedness of τ1 with respect to
Σ. This new judgment is defined in Fig. 7 and must also be inserted as a premise
into existing rules for terms involving types, namely ascriptions and annotated
lambdas. The well-formedness judgment ensures that all type variables appearing
in a term are either bound or appear in the type variable context.

It is at this stage that marking would occur. As previously mentioned, we
do not include this process in our presentation; we assume the user provides an
expression that is already well typed in the gradually typed calculus. We discuss
how our system may be extended to include marking and the use of marking to
simulate a form of implicit polymorphism in Sect. 6.

3.2 Elaboration and Cast Calculus

We extend the typed elaboration rules as shown in Fig. 9. Type function appli-
cations are elaborated analogously to function applications. The function is cast
to the output of the matched type judgment to accommodate the gradual type,
and the function is analyzed against this type. Note that to ensure elaboration
unicity (further discussed in Appendix A), EATLam cannot be applied when
the function body is a hole, although disallowing type functions in subsumption
achieves the same effect. An implicit change from Hazelnut Live is that hole
contexts must now assign to each hole a type variable context Σ in addition to
a type τ and context Γ.
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3.3 Dynamics and Final Forms

Figure 10 contains the type assignment rules for the internal cast calculus. They
are the standard System F typing rules, with the addition of the hole context.
No matched forall premise is necessary in TATAp because a cast to a forall type
has been inserted before the type application during elaboration.

The universal type creates a new ground type case (Fig. 11). The matched
ground judgment is used in the ITGround and ITExpand instruction transi-
tions, which are not presented here as they are not directly modified. The ground
type judgment is used to simplify the range of final forms, presented in Fig. 12.
We add new value, boxed value, and indeterminate form cases for type functions
and casts between universal types. Each normal form is exactly one of these
three kinds of final form.

The operational semantics is presented as a contextual semantics. Evaluation
contexts must be extended to allow for the new syntactic forms. Since type
functions are values, all that is required is to extend evaluation contexts into
type function application (omitted from figures as this is standard).

Finally, we add new transition rules. Type functions applied to a type are
evaluated by type substitution, as in System F. Note that previous work [2,10,
12,17] avoided this approach, instead choosing to keep a partial mapping from
type variables to types. A discussion of the decision to eschew this development
and its implications for parametricity and graduality is contained in Sect. 4. In
contrast with merely extending GTLC with System F rules, we must add an
additional rule that allows type function application to move past casts. The
rule is analogous to the rule for term functions.

The instruction transitions are shown in Fig. 13. The bracketed d final premise
may be omitted to have an unspecified evaluation strategy. Choosing to including
it for eager evaluation creates a deterministic evaluation useful for implementa-
tions of the system. Finally, the step relation d �→ d′ is defined by performing
instruction transitions in an evaluation context; this is typical of contextual
semantics, and we introduce no modifications to the original presentation, so it
is not reproduced here.

Fig. 6. Matched forall types.

Fig. 7. Well-formedness rules.
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Fig. 8. Bidirectional typing rules.

Fig. 9. Elaboration rules from external expressions to internal expressions.

Fig. 10. Type assignment for internal expressions.

Fig. 11. Ground and matched ground rules.
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Fig. 12. Final form rules.

Fig. 13. Instruction transitions.

4 Metatheoretic Properties

Our system conserves all of the typing properties that held of the original system
(c.f. Theorems 3.1 through 3.14 in [18]), up to the inclusion of an additional type
variable context. Notably, we show type safety of the system:

Theorem 1 (Type Safety). The system presented in Sect. 3 is type safe:

1. Progress: If ∅ � Δ and Δ; ∅; ∅ � d : τ then either d indet, d boxedval, or
there exists an IHExp d′ such that d �→ d′.

2. Preservation: If ∅ � Δ, Δ; ∅; ∅ � d : τ and d �→ d′ then Δ; ∅; ∅ � d′ : τ .

We also show the properties of elaboration and properties of complete terms
that hold of Hazelnut Live. The full statements and explanations of these theo-
rems can be found in Appendix A.

We now discuss the two key metatheoretic properties of this work: parametric-
ity and the gradual guarantee.
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4.1 Parametricity

As mentioned before, previous systems obeyed additional restrictions in order to
preserve parametricity. These stem from the approach of Ahmed et al. [1], which
showed that substitution typing is not parametric, but the approach of using
type bindings is. The example to show this presented in Igarashi et al. is thus:

f = Λα. λx : num. x〈num ⇒? ⇒ α〉

Noting that
f [num] 1 �→∗ 1
f [bool] true �→∗ true〈num ⇒? � bool〉

where 1 boxedval, and true〈num ⇒? � bool〉 indet. Indeterminate forms corre-
spond to blame/errors in other calculi. Using type bindings would instead result
in:

f [num] 1 �→∗ 1〈num ⇒? � α〉
We argue that creating errors from otherwise sensibly executable programs

is against the spirit of live programming with holes, and we would like to avoid
doing so. In live programming, we would like to explore the implications of
filling the type holes, where it is helpful to not prematurely error. Igarashi et
al. further note that type bindings carry overhead, and they introduce static
and gradual type variables to allow for substitution typing when no cast to the
gradual type exists. Our system does not contain the labels on type variables;
they complicate decisions for the programmer, and also complicate the definition
of consistency, which must now allow for quasi-polymorphic functions to appear
in places expecting polymorphic functions. We furthermore argue that in our
setting, since expressions can be holes that might be filled in later, it is impossible
to know a priori whether a static type variable label is appropriate.

Since the approach of using type bindings (also used in systems such as GSF)
only enforces parametricity by introducing unnecessary error states, we instead
focus on weakening parametricity. We follow the construction of parametricity
presented by Crary [5]. We define equality up to type annotations similarly:

Definition 1. d1 =0 d2 whenever d1 and d2 differ only in syntactic types.
Namely, this means that types in lambda annotations, type function applications,
and casts may vary, and only such types may vary.

We define a similar relation for external expressions. We say that a program
(term) is complete if it does not contain any expression or type holes. If a pro-
gram is complete and well-typed, all of its casts are identity casts. This can be
intuitively thought of as an embedding in System F, which is parametric. We
formalize this intuition in the following theorem:
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Theorem 2. Suppose e1 complete and e2 complete and Σ;Γ � e1 ⇒ τ1 � d1 � ∅
and Σ;Γ � e2 ⇒ τ2 � d2 � ∅ and e1 =0 e2.
If d1 �→∗ v1 and v1 val then there exists v2 such that d2 �→∗ v2 and v2 val and
v1 =0 v2.

Corollary 1. If �→ is confluent and d1 �→∗ v1 and d2 �→∗ v2 and v1 val and
v2 final then v2 val and v1 =0 v2.

We actually have too strong of a hypothesis here; we merely need d1 =0 d2
to prove the result, but we focus on external expressions to emphasize that is
what the programmer sees and has control over. Note also that the evaluation of
all complete terms terminates in a val (this is not proven of the original system,
but should also hold from embedding in System F). And so, the hypothesis of
the theorem is satisfied by any well-typed, complete expression.

The theorem is proven by formalizing the intuition that all casts are identity
casts. We define a relation =′

0 that also requires that casts must be identity
casts, and is thus a sub-relation of =0. We show that if two terms are =0 and are
complete, well-typed programs, then they must be =′

0. We show that if d1 =′
0 d2

and d1 �→ d′
1 then there exists a d′

2 such that d′
1 =′

0 d′
2 and d2 �→ d′

2. Thus we
can push the relation through the entire evaluation of d1. Since it relates values
to values, then when we reach the end of d1’s trace, we have a v2 that is a value.
(2) follows from (1) by using the unique normal form property (which follows
from confluence); the final (normalized) value of d2 must be unique and so v2
must be identical to the existentially quantified normal value from (1). We do
not show confluence of the system in this work, so we leave it as a hypothesis in
the theorem.

In short, this theorem asserts that if we do not deal with graduality then we
are able to ensure full parametricity. However, to motivate the use of substitution
in our gradual system, we also make a guarantee about possibly incomplete
terms when using eager evaluation semantics (by which we mean requiring the
argument to a beta reduction to be final)1.

Definition 2. d1 =casts d2 when d1 and d2 differ only in syntactic types and
presence of casts. More formally, we say =casts is the smallest congruence that
contains =0, and for all types τ1, τ2, d1 =casts d2 implies d1〈τ1 ⇒ τ2〉 =casts d2
and d1 =casts d2〈τ1 ⇒ τ2〉
Theorem 3. If Δ; ∅; ∅ � d1 : τ1 and Δ; ∅; ∅ � d2 : τ2 and d1 =casts d2 and
d1 �→∗ v1 and v1 boxedval then there exists v2 such that d2 �→∗ v2 and either
(v2 boxedval and v1 =casts v2) or v2 indet.

1 The reason this is required is that if the argument to a function loops infinitely,
if it is lazily evaluated it may be completely thrown away (consider the function
λx :?. λy :?. y), whereas if the beta reduction cannot happen due to a failing cast in
the function, the argument will be continually reduced.
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Corollary 2. If �→ is confluent and Δ; ∅; ∅ � d1 : τ1 and Δ; ∅; ∅ � d2 : τ2 and
d1 =casts d2 and d1 �→∗ v1 and d2 �→∗ v2 and v1 boxedval and v2 boxedval then
v1 =casts v2.

We remark that =0 is a subrelation of =casts, so we may have d1 =0 d2 in
the hypothesis instead. The theorem is proven via induction on the evaluation
of d1. Namely, we show two lemmas:

Lemma 1 (Stepwise Parametricity Lemma). If Δ; ∅; ∅ � d1 : τ1 and
Δ; ∅; ∅ � d2 : τ2 and d1 =casts d2 and d1 �→ d′

1 then there exists a d′
2 such that

d2 �→∗ d′
2 and either d′

1 = d′
2 or d′

2 indet.

Lemma 2 (One-sided Parametricity Lemma). If d1 =casts d2 and
d1 boxedval then there exists a d′

2 such that d2 �→∗ d′
2 and d1 =casts d′

2 and
d′
2 final.

Lemma 1 allows us to use the trace of d1 as a target for induction until
d1 boxedval. We find a sequence of steps for d2 that preserve =casts; the difficulty
here is that we may have to do some sequence of cast reductions before applying
the appropriate beta reduction. We proceed by induction on the syntactic sub-
expression of d2 that corresponds to the sub-expression of d1 that is reduced
(picked such that the outer form of the sub-expression is not a cast). We show
that we either perform the same beta reduction (in the absence of casts), or we
can find a sequence of cast reductions that reduce an ordering2 and thus we may
proceed inductively.

Once this process has finished, Lemma 2 may be applied to show that the
evaluation of d2 terminates, and thus we have the desired final result. The proof
of this proceeds similarly to the previous Lemma, noting that d2 cannot beta
reduce due to the =casts constraint and for any trailing casts, there is a sequence
of cast reductions that reduces the syntactic size of d2.

Together, these two properties establish that modulo successful termination,
even gradual terms behave in a parametric manner. Existing systems that possess
parametricity uniformly introduce cast errors to do so, so we have effectively
proven our claim that the difference between those systems and ours is that we
raise fewer cast errors on otherwise successfully executing programs.

4.2 Gradual Guarantee

The gradual guarantee specifies how the static and dynamic semantics of a grad-
ual language should behave relative to a precision relation between programs.
This relation captures the operation of filling in holes – a program is made
2 The exact ordering is to, for each natural number n up to the number of function

applications, count the number of casts in the function position of n function appli-
cations. Then lexicographically order them from largest to smallest n with syntactic
size at the end. Such a bizarre ordering must be used as the ITApCast rule increases
the number of casts and the size of the term, but moves a cast from the function
position to argument and external positions.
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more precise by replacing its empty holes with other terms. We shall consider a
precision relation on types, external expressions, internal expressions, and hole
contexts, all of which we denote �.

Intuitively, the gradual guarantee states that making a program less precise
results in more permissive type checking (the static gradual guarantee) and a
less precise evaluated result (the dynamic gradual guarantee). Another way to
phrase the static gradual guarantee is that deleting parts of a program, e.g. type
annotations, cannot introduce new static errors. We take the formal statement
of the gradual guarantee from Siek et al. [22] and adapt it to our notation:

Definition 3. We say d ⇑ when there does not exist a v such that d �→∗ v and
v final (in other words, d diverges).

Definition 4. The Gradual Guarantee is a collection of four properties:
Suppose e � e′ and ∅; ∅ � e ⇒ τ � d � Δ.

1. There exists a τ ′ such that ∅; ∅ � e′ ⇒ τ ′ with τ � τ ′.
2. There exist a d′ and a Δ′ such that ∅; ∅ � e′ ⇒ τ ′ � d′ � Δ′ with Δ � Δ′

and Δ,Δ′; ∅; ∅, ∅ � d � d′.
3. If d �→∗ v with v boxedval then d′ �→∗ v′ with v′ boxedval and v � v′.

If d ⇑ then d′ ⇑.
4. If d′ �→∗ v′ with v′ boxedval then d �→∗ v such that either v boxedval and

v � v′ or v indet.
If d′ ⇑ then d ⇑ or d �→∗ v with v indet.

Of course, what the guarantee establishes depends on the definitions of the
various precision relations. Recall that our setting is that of a live programming
environment. Thus we would like increased precision to coincide with the intu-
itive idea of the programmer filling holes in the program. Thus we do not want
a definition similar to System FG’s definition, but rather one closer to GSF’s
definition.

We omit the rules for precision for types and for external expressions, since
they are completely straightforward and do not depart from previous presenta-
tions of precision in gradual languages, such as for the Gradually Typed Lambda
Calculus (GTLC) of Siek et al. The precision relation holds between two syn-
tactic constructs with the same head if it holds between their corresponding
children, and anything is more precise than a hole. Using these straightforward
definitions, we can prove the following theorem:

Theorem 4. Our system satisfies Property 1 of Definition 4.

This property, the static gradual guarantee, states that a less precise term
synthesizes a less precise type. It is amenable to direct proof by induction,
strengthened to include contexts and both analytic and synthetic typing. We
have completed such a proof in our Agda mechanization as discussed in Sect. 5.

The remaining components of the gradual guarantee are not proven for our
system, and we leave them to future work. However, there are some features of
the system that seem necessary in order to hope for these properties to hold.
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Firstly, in order to satisfy Property 2 of Definition 4, a less precise term must
analytically elaborate with a less precise type. This is broken with the standard
subsumption rule found in Hazelnut Live, in which terms elaborate their synthe-
sized type, even if it is less precise than the analyzed type, so long as the two
are consistent. Therefore we consider a modified subsumption rule in Fig. 14. It
employs the meet between types, which is the greatest lower bound of types with
respect to the aforementioned precision relation, and is a partial function defined
only on consistent types. With the new rule, subsumption elaborates with a type
that is more precise than both the analyzed and synthesized type, supporting
graduality. In order to retain the properties of typed elaboration and elaboration
unicity, the rule must insert a cast and must not apply to type functions. It is
with this version of the subsumption rule that we have proven the theorems in
this paper.

Fig. 14. Modified subsumption rule.

Properties 2–4 of Definition 4 depend on the precision relation for internal
expressions, which is considerably more subtle than that for external expressions
and types. Siek et al. define an appropriate definition of internal precision for
the GTLC, and prove the gradual guarantee for this system. We adapt this
relation to our system. The rules that do not involve casts or the empty hole
are analogous to the rules for external expressions, so are elided. The remaining
rules are provided in Fig. 15. The rules involving casts correspond directly to the
rules for term precision for the GTLC’s cast calculus. Since internal holes carry
type information, a term is only more precise than a hole if its assigned type is
more precise than the hole’s contextually assigned type. Since internal precision
involves type assignment, it depends on a pair of contexts, one for each side of
the relation, which may share a type context since the different contexts need
only vary by term precision.
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We define Γ � Γ′ to hold when Γ and Γ′ have equal domains and for all x
such that x : τ ∈ Γ and x : τ ′ ∈ Γ′, τ � τ ′. We define Δ � Δ′ to hold when for
all u such that u :: τ [Σ; Γ] ∈ Δ and u :: τ ′[Σ; Γ′] ∈ Δ′, τ � τ ′ and Γ � Γ′.

Fig. 15. Precision between internal expressions

Having adapted internal precision from the GTLC to our system, the gradual
guarantee is fully defined. We have proven the static gradual guarantee, but it
remains to be seen whether the rest of the properties hold, as they do for the
GTLC. The updated subsumption rule is necessary for typed elaboration to
behave monotonically on types.

5 Implementation

5.1 Agda Mechanization

This paper is accompanied by an Agda mechanization of the system and proofs
of most of the theorems3. The mechanization is based on that of Hazelnut Live,
with a few differences. This mechanization uses de Bruijn indices to represent
both term and type bindings, and uses an ordered, combined context rather
than independent term and type contexts. It also does not include hole names
or hole contexts, and therefore does not capture the formalism for the fill-and-
resume operation of Hazelnut Live, since the present work does not extend that
part of the theory. The mechanization uses the updated subsumption rule for

3 The code is available at https://github.com/hazelgrove/hazelnut-polymorphism-
agda/.
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elaboration, EASubsume’. Due to the absence of hole contexts and the new sub-
sumption rule, the analytic elaboration rules for holes can be removed entirely, as
can the premises disallowing holes in the subsumption elaboration rule. Matched
arrow and matched forall judgments are implemented using the meet operation.

The following theorems have been proven: all parts of Theorem 5, Theorem 1,
and Theorem 6, along with the parametricity theorems (Theorems 2 and 3) and
the static gradual guarantee (Theorem 4). The repository indicates where to find
the proof of each theorem.

5.2 Implementation

We have fully implemented the polymorphic system into the Hazel program-
ming environment4. Notably, the implementation coexists with other extensions
to Hazelnut Live, such as algebraic data types, recursion, type aliases, etc.; the
combination of all of these features has not been formalized. Hazel is imple-
mented in ReasonML and uses js of ocaml [25] to compile to a website.

Refer again to Fig. 1 for the appearance of the Hazel user interface. The
user-facing gradually typed calculus is input via a gradual structure editor that
uses obligations (see Tylr [15], the basis for Hazel’s input system5); for example,
inserting a typfun creates an obligation for a -> and inserts the appropriate
expression hole. Type function application is denoted with @< >.

6 Towards Implicit Polymorphism

For practical programming purposes, it is burdensome to write explicit type
applications for each use of a polymorphic term. Therefore, many general-
purpose functional languages adopt implicit polymorphism, in which the type
applications are left out of the concrete syntax, and the instantiated types are
statically inferred. There exist bidirectional calculi for implicit polymorphism,
such as in Dunfield and Krishnaswami [7], which we could have chosen to grad-
ualize in the same manner as we did for System F above.

Instead we propose to take advantage of the structured editing capabilities
of Hazel. The widespread practice of implicit language features represents a com-
promise between the interests of the language user and the language developer.
Compared to explicit features, the user benefits by typing and seeing less code,
and by achieving more flexible code, at the cost of language transparency, con-
sistency, and control. The implementer benefits by maintaining the same user
interface and language architecture, only needing to insert an instantiation phase
in the language processing pipeline, at the cost of increased language complexity.

We believe that by improving the programming environment architecture,
this compromise can in turn be improved. Hazel is a gapless editor, meaning
that at every point in time, syntactic information, static information, and all
4 The Hazel project is described, with a link to the source code, at https://hazel.org.
5 In short, there is an indication for necessary syntactic forms that must be added

before a valid editor state can be reached.
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downstream services are maintained by the editor. In this context we propose
a system of implicit polymorphism in which the editor maintains appropriate
type applications in the visible surface syntax of the program. This improves the
transparency and regularity of the language while retaining the ease of editing
and flexibility of implicit systems.

For example, this system would ideally insert the [A] and [B] type applica-
tions into the program below, supposing that f : A → B and l : A list.

map [A] [B] (f) (l)
These type applications could be folded by default to avoid cluttering the

screen with useless information. Despite this diminution of the type application
forms, the proposed strategy is distinct from usual implicit schemes because the
persisted program will retain the inferred type applications, and because the
user will be able to see and edit the type arguments if needed. Figures 16, 17,
18 and 19 display mock ups of various editor states in a hypothetical version of
Hazel with implicit polymorphism.

6.1 Mark Insertion

Zhao et al. [28] describe the “mark insertion” component of the Hazel architec-
ture. Hazel programs begin as unmarked expressions e, corresponding exactly
to the external expressions in Hazelnut Live except that they do not contain
nonempty holes. Next comes a bidirectionally typed mark insertion phase, with
judgment forms Σ; Γ � e � ě ⇒ τ and Σ; Γ � e � ě ⇐ τ . Each unmarked
expression e is mapped to a corresponding marked expression ě, which is iden-
tical to e except for the presence of annotated nonempty holes called marks.
Both unmarked and marked expressions have typing rules, and the mark inser-
tion phase inserts the minimal marks needed to produce a well-typed result,
essentially sectioning off ill-typed subexpressions with informatively annotated
nonempty holes. After mark insertion comes the elaboration and evaluation
stages of Hazelnut Live.

Figure 20 contains the mark insertion rules for the polymorphic fragment.
The other mark insertion rules are similarly related to the basic typing rules.
For each typing rule, there is a mark insertion rule that inserts no marks in the
case that the premises of the typing rule are met. Each check in the premise
of a typing rule gives rise to an additional mark insertion rule which inserts an
appropriate mark when the check fails.

Mark insertion should satisfy certain metatheoretic properties. These prop-
erties include totality and unicity, which mean that the insertion operation is
a total function on unmarked expressions. Mark insertion should only generate
well-typed terms, and erasing marks from the marked term should recover the
original term. The mark insertion process should not affect terms that already
type check, and should insert at least one mark into terms that do not type check.
These properties hold of the original marked lambda calculus, but do not all hold
of our polymorphic extension. The reason is that a mark inserted around a type
abstraction in analytic position may not be well typed. Considering the mark



152 A. Chen et al.

Fig. 16. Hypothetical behavior: when a type application insertion succeeds, the type
arguments are listed along with the type of the polymorphic term. An ellipsis mark
indicates folded code and provides a way to examine it.

Fig. 17. Hypothetical behavior: when the ellipsis mark is selected, it expands to reveal
the explicit type applications and arguments that have been inserted by the editor. If
this code is edited by the user, it becomes fully explicit and is colored accordingly.

Fig. 18. Hypothetical behavior: when a type application insertion fails, the conflicted
type arguments are indicated. The ellipsis mark signals an error.

Fig. 19. Hypothetical behavior: the editor displays the conflicting required refinements
of the unfillable type argument hole. If the user hovers over or selects one of the
refinements, it will be applied to the hole, resulting in errors elsewhere in the code.

Fig. 20. Mark insertion rules
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to be a nonempty hole, it can only analyze against a type if its contents synthe-
sizes a type, and in the case of a type abstraction, this only holds if its body
synthesizes a type. Since our language includes unannotated lambda abstrac-
tions, which do not have a type synthesis rule, this case is possible. Concretely,
judgements such as:

Σ; Γ � �Λα. λx. e�⇐
��∀ ⇐ τ

do not hold, even if the term is the output of the marking process. To address
this, additional typing and elaboration rules for marked type abstractions would
need to be added.

6.2 Type Application Insertion

The mark insertion phase currently uses the bidirectional typing flow to insert
marks into a Hazel program where there would otherwise be a static error. Type
applications may be inserted by enriching this operation, so that some static
errors are addressed not by inserting a mark, but by inserting a type applica-
tions with a type hole as the argument. Specifically, when a polymorphic term
is found, but is inconsistent with the expected type or type former, a type appli-
cation may be inserted rather than a mark. The new rules for these insertions
at type applications are given in Fig. 21. These rules replace the previous rules
for applications presented in Zhao et al. Rules for type application insertion at
projections and at subsumptions are omitted for brevity.

Fig. 21. Implicit insertion.

These type application insertion rules are derived from the mark insertion
rules in Zhao et al. The rules that have been updated are those with a premise
of the form τ �→ τ1 → τ2, τ � �→, τ �× τ1 × τ2, τ � �×, τ ∼ τ1, or τ � τ1, where
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τ and none of the other types involved are synthesized from a subexpression of
the expression being marked. These conditions correspond to an opportunity to
insert a type application that may avoid a failed type matching or consistency
check, and thereby avoid a mark insertion.

The mark insertion rule for conditionals involves a consistency check between
the types synthesized from the branches of the conditional. It is possible to write
valid type application insertion rules for conditionals, but it is not clear what
should be done in the case of inconsistent polymorphic branches.

In order to gauge when it is appropriate to insert a type application, we intro-
duce a prenex erasure operation ∀�(τ), which erases all leading ∀. constructors
of τ and replaces their bound variables with ?. If a type matching or consistency
check fails on the originally synthesized type, the check is retried on the prenex
erased type. This new check corresponds to whether, according to the structure
of the type, it may be possible to pass the type matching or consistency check
after type applications are inserted around the subexpression.

The new rules are designed so that the new mark and type application inser-
tion operation retains most desirable metatheoretic properties of the original
mark insertion operation. The combined insertion phase should still be a total
function, generate well-typed terms, and not affect terms which already type
check. However, it is no longer the case that the operation’s only effect is the
insertion of marks. The new rules ought to ensure that erasing all marks and
some subset of the type applications recovers the original term, and that the
insertion operation applied to a term that does not type check produces a term
that includes either a mark or a type application. These properties remain con-
jectural for the new system, but they should be straightforward to prove.

6.3 Type Arguments

The type application insertion process described above simply inserts type holes
as arguments, which is not satisfactory for handling type errors that arise from
implicit polymorphic code. Therefore we propose a static phase for instantiat-
ing type arguments, which occurs after mark and type application insertion and
before elaboration into the internal calculus. Ideally this phase would simply
reuse type hole inference machinery from mark insertion, which uses constraints
on type holes generated during the mark insertion phase to generate the possi-
ble fillings for the type holes that appear in the program. To simulate implicit
instantiation, when the constraints for an inserted type hole contain no conflicts,
the editor would automatically fill the hole accordingly. When there are conflicts,
the same user interface that appears in Zhao et al. would be used to convey this
information to the user, who could then select an option for filling the hole.

Unfortunately, the type hole inference technique dose not directly generalize
to the polymorphic setting. As the type level of System F is isomorphic to the
untyped lambda calculus, the constraints on type holes comprise general higher-
order unification problems, the solution of which is not decidable. For example,
the code below generates the higher order unification problem ?1 (?3) =?2, where
application between types is defined so as to obey the obvious beta rule.



Polymorphism with Typed Holes 155

let f :?1 = �� in let x :?2 = f [?3] in ��
However, this is a rather unnatural example. In many cases, a programmer is

applying a polymorphic library function, like map, the type of which is completely
known, in the sense of containing no metavariables (holes). This suggests the fol-
lowing algorithm: perform standard unification, eagerly simplifying constraints
by applying (language level, not meta-level) substitutions into types that are free
of metavariables. All other substitutions are stuck, but may become unstuck as
metavariables are solved. Constraints involving perpetually stuck substitutions
would never be used, the fact of which is a manifestation of the incompleteness of
the algorithm, but many useful cases, like the application of polymorphic library
functions, could be solved.

7 Related and Future Work

Fill and Resume. Hazelnut Live presented a notion of fill-and-resume. That is,
that a program could be evaluated, after which the programmer fills in (i.e.
replaces) a hole with a valid expression. Then, because program evaluation is
pure, the operation of program reduction commutes with replacing the hole, so
the evaluator can replace the corresponding hole(s) in the evaluated expression,
and continue evaluating. This required a notion of tracking substitutions that
occurred in the closure around holes, and replaying those substitutions on the
newly provided expression. This has a very close connection to contextual modal
type theory, with the hole context tracking contexts. These substitutions were a
part of the cast calculus, and their validity was checked via substitution typing,
which is used as a premise to type assignment on holes.

We do not argue for the correctness of fill-and-resume in this work, but we
conjecture it to still be valid. This is because our system is still pure, so evalua-
tion should still commute with hole filling. There are subtle issues with naively
extending substitution typing. It is clear the substitutions must now also track
type substitutions. Term substitutions that happen after a type substitution may
have their typing affected, and it is not immediately obvious how to account for
this with a static typing judgment. An analogous problem does not exist in the
original formulation, since substituting in sub-terms does not change the type
of a term, which is all that is tracked in the substitution typing.

Thus, we leave proving validity of fill-and-resume with corresponding substi-
tution typing judgments as future work.

Implicit Polymorphism. We have described a system for allowing polymorphic
terms to be used without an explicit type application, as with implicit polymor-
phism. Yet this editor service does not address implicit polymorphism on a the-
oretical level, and may fail to catch type errors that a truly implicit system can.
As seen in Xie et al. [27], implicit polymorphism may force instantiations that
cause errors that may be resolved with additional typing information, violating
the gradual guarantee. As far we know, the problem of a gradually parametric
implicit polymorphic system has yet to be solved. We are interested in whether
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such a system exists, and whether the solution to this problem relates to the
problems described previously and could be adapted to type hole inference.

References. References see popular use even in functional programming lan-
guages, such as the ML family of languages. However, references have not yet
been implemented into the Hazel programming environment, nor has there been
development on the theory of how references interact with expression holes. Siek
et al. [23] have shown that references can work with the gradually typed lambda
calculus. We are unaware of any work that adds references to a polymorphic
gradually typed calculus.

It appears that combining graduality, polymorphism, hole expressions, and
references creates unique problems; for example, type ∀α. α ref can be populated
with Λα. ref(��), but cannot be populated in a system without expression holes.
Such examples that create a new reference with each type function application
may preclude future attempts at type erasure run-time semantics, which are
otherwise a promising optimization as shown in Igarashi et al.
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TFP 2024 for their insightful feedback about earlier drafts of this work. Adam Chen
would like to acknowledge Eric Koskinen for helping with the opportunity and logistics
for working on a project outside of the topic of their funded work. We would also like
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A Type Safety Theorems

Our system conserves all of the typing properties that held of the original system
(c.f. Theorems 3.1 through 3.14 in [18]). To begin with, the bidirectional typing
allows for unique elaboration to a term of a consistent type:

Theorem 5. The following properties hold:

– Elaborability: any term typable by the bidirectional system has an elaboration.
1. If Σ;Γ � e ⇒ τ then there exist d and Δ such that Σ;Γ � e ⇒ τ � d �

Δ.
2. If Σ;Γ � e ⇐ τ then there exist d, τ ′, and Δ such that Σ;Γ � e ⇐ τ �

d : τ ′ � Δ.
– Elaboration Generality: the converse of the above is true.

1. If Σ;Γ � e ⇒ τ � d � Δ then Σ;Γ � e ⇒ τ .
2. If Σ;Γ � e ⇐ τ � d : τ ′ � Δ then Σ;Γ � e ⇐ τ .

– Elaboration Unicity: elaboration of terms is unique.
1. If Σ;Γ � e ⇒ τ1 � d1 � Δ1 and Σ;Γ � e ⇒ τ2 � d2 � Δ2 then τ1 =

τ2, d1 = d2, and Δ1 = Δ2.
2. If Σ;Γ � e ⇐ τ � d1 : τ1 � Δ1 and Σ;Γ � e ⇐ τ � d2 : τ2 �

Δ2 then τ1 = τ2, d1 = d2, and Δ1 = Δ2.
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– Typed Elaboration: the elaboration is consistent with the type assignment sys-
tem.
1. If Σ;Γ � e ⇒ τ � d � Δ then Δ;Σ; Γ � d : τ .
2. If Σ;Γ � e ⇐ τ � d : τ ′ � Δ then Δ;Σ; Γ � d : τ ′ with τ ∼ τ ′.

– Type Assignment Unicity: type assignment assigns a unique type.
If Δ;Σ; Γ � d : τ and Δ;Σ; Γ � d : τ ′ then τ = τ ′

In short, these properties show that elaboration defines a unique embedding
from the user-facing gradually typed calculus into the typed cast calculus. Thus
it is sufficient to state type safety solely in terms of the cast calculus. We repeat
that we prove that the system with the instruction transitions defined in Fig. 13
is type safe:

Theorem 1 (Type Safety). The system presented in Sect. 3 is type safe:

1. Progress: If ∅ � Δ and Δ; ∅; ∅ � d : τ then either d indet, d boxedval, or
there exists an IHExp d′ such that d �→ d′.

2. Preservation: If ∅ � Δ, Δ; ∅; ∅ � d : τ and d �→ d′ then Δ; ∅; ∅ � d′ : τ .

Recall that a program (term) is complete if it does not contain any expression
or type holes. Complete programs are elaborated into internal expressions with
only identity casts and without type or expression holes. This fragment of inter-
nal expressions is equivalent to System F, and therefore recovers its properties
such as strong normalization. These properties are formalized in the following
theorem that our system conserves from Hazelnut Live [18]:

Theorem 6. The following properties about complete programs hold:

1. Complete Elaboration: If Γ complete, e complete, and Γ;Σ � e ⇒ τ � d � Δ
then τ complete, d complete, and Δ = ∅.

2. Complete Preservation: If d complete, Δ;Σ; Γ � d : τ , and d �→ d′ then
d′ complete and Δ;Σ; Γ � d′ : τ

3. Complete Progress: If d complete and Δ;Σ; Γ � d : τ then either d val or
there exists an IHExp d′ such that d �→ d′.

Complete elaboration states that a complete program in the user-facing grad-
ually typed calculus elaborates into a complete program in the cast calculus.
Complete preservation states that the step relation preserves completeness as
well as typing, and complete progress states that every complete term is a val or
can step.
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